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Motivation

• Plasma interaction with the first wall is of critical importance to ITER and  future 
power reactors.

• Far Scrape-off Layer (SOL) density profiles are often relatively flat and extend all 
the way to the outer wall.

• Fast edge diagnostics and turbulence simulation codes show the existence of 
intermittent coherent structures born near the LCFS and propagating radially
towards the wall.

• Intermittent structures have been shown to account for up to 70% of the net cross-
field particle and energy transport in the SOL.

• If the intermittent structures reach the outer wall, they may cause erosion above 
the level expected from time-averaged SOL plasma parameters.

• Increased particle and heat cross-field fluxes during Edge Localized Modes 
(ELMs) may reach the outer wall and cause extra damage. 

• Langmuir probes with their high spatial and temporal resolution provide an 
excellent diagnostic tool for far SOL plasma studies.

• A large amount of data accumulated by the two plunging probe arrays on DIII-D 
was not previously analyzed with emphasis on the far SOL and near-wall regions.

So, here we go!



Experimental setup
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Mid-plane Reciprocating Probe Array

• The in-and-out plunge time is about 0.2 s
• The plunge length is about 15 cm
• On time scale < 1 ms probe can be 

considered stationary 
• Spatial resolution:  ~ 2 mm
• Temporal resolution:  1 µs (Isat and Vf)             

10 µs (Te) 
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Shadow-casting elements of DIII-D vessel

“Knee limiter”
Bumper
limiter 

Outer wall • Connection length decreases 
with distance into the SOL  

• Depending on the magnetic 
configuration different elements 
may start casting shadow at 
different distances from the 
LCFS

• Some of the shadow casting 
elements (baffles, “knee 
limiter”) are toroidally
symmetric, others (bumper 
limiters) are not
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Bumper limiters - most protruding elements of the outer wall

0°

240°
probe

Limiters 

230°

95°
310°

B

• There are 3 toroidally
displaced limiters  

• Limiters have radial 
extent of about 2 cm

• 230° limiter is close to 
the mid-plane probe
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X-point probe array
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Probe head layout
(view from above)

R

Vf
Double 
probe

Is1

Is2

• The in-and-out plunge time is 0.3 s
• The plunge length is about 25 cm
• Spatial resolution:  ~ 1 mm
• Temporal resolution:  1 µs (Is and Vf)
• ne and Te profiles derived from double probe data
• Mach number of ion flow derived from two 

saturation currents

X-point probe



Far SOL density and temperature profiles 
in Lower Single Null (LSN) 

Simple As Possible Plasmas (SAPP) L-mode
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ne, Te and Eθ time traces in high-density L-mode
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Shot# 105524: LSN, Bt = 2 T, <ne> ≈ 6×1019 m-3, fGw~ 1

• In 1 ms the probe moves 
by about 1.5 mm, which 
is twice smaller that the 
radial extent of the tips

• Therefore, on the time 
scale of below 1 ms the 
probe may be roughly 
considered stationary
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• Density and temperature in 
far SOL are considerable

• ne and Te signals feature 
spikes often more than 
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SOL density profiles in SAPP L-mode show 3 distinct regions

SAPP L-mode
B = 2 T, Ip = 1 MA

Shot 107405
<ne> ≈ 3.7×1019 m-3, fGw~ 0.35

Shot 107405
<ne> ≈ 2.8×1019 m-3, fGw~ 0.27

Shot 107404
<ne> ≈ 4.3×1019 m-3,  fGw~ 0.4

Shot 107404
<ne> ≈ 5.3×1019 m-3, fGw~ 0.5
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Temperature and relative density fluctuation profiles
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• Temperature decay length is shorter than that for density in near and middle SOL
• In the shadow region temperature and density decay lengths are close
• Relative fluctuation levels stay flat and do not change with average density
• Absolute fluctuation levels increase with density
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Shot 107408
<ne> ≈ 2.8×1019 m-3, fGw~ 0.36

Shot 107410
<ne> ≈ 4.5×1019 m-3, fGw~ 0.58

Shot 107409
<ne> ≈ 4.3×1019 m-3,  fGw~ 0.56

Shot 107408
<ne> ≈ 3.7×1019 m-3, fGw~ 0.48

SAPP L-mode
B = 2 T, Ip = 0.8 MA
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Temperature and relative density fluctuation profiles
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n/n~
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• Temperature profile does not seem to be affected by the shadows in this case
• Temperature decay length is longer than at higher Ip

• Relative fluctuation levels stay flat and at about the same level

 λ ~ 5 cm

R(cm) R(cm)

0.3



So, what is different between those two groups of shots?

• Greenwald fraction is higher for the second group (lower plasma current) shots
• Connection lengths to the upper and lower baffles are  about 25% longer for the 

second group

• More interestingly:

0

0.25

0.1

1

10

223 225 227 229 231 233 235 237

Shot 107404 <ne> ≈ 5.3×1019 m-3, fGw~ 0.5, Ip = 1 MA
Shot 107410 <ne> ≈ 4.5×1019 m-3, fGw~ 0.58, Ip = 0.8 MA
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R(cm)

R ≈ 230 cm

2 ms

In the second group of shots absolute 
fluctuation levels are higher in far SOL

In the second group of shots far SOL 
fluctuations exhibit large bursts

We will come back to this later



Effect of the outer and upper gap scans 
on the far SOL profiles
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Far SOL density decreases with increased outer gap
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Same data aligned with 
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Looks like the outer gap does affect the far SOL density!
Caution: the “knee” shadow has moved as well, so 

it may be a combined effect 
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Upper gap scan does not affect SOL profiles 

All 3 shots: <ne> ≈ 2.7×1019 m-3, fGw~ 0.3
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“Knee limiter” shadow does not seem to matter much in this case!

Upper gap:

R(cm)

D.L. Rudakov et al - 18



Comparison of L and H modes in LSN
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Isi time traces in high-density H-mode with small ELMs

Shot# 107805: LSN, Bt = 1.6 T, PNBI = 1.7 MW, fGw~ 1

Shot# 107806: LSN, Bt = 1.6 T, PNBI = 0.75 MW, fGw≈ 0.85

• Two consecutive high-density H-
mode discharges

• First discharge had higher heating 
power and comparatively long 
(~30 ms) ELM-free periods

• Second discharge had smaller 
(about 6 times)  but very frequent 
ELMs

• ELM duration from Dα is 2-3 ms

0

3

I si
(A

)

0

0.8

ELMs

t (s) 3.223.19 3.20 3.21

D
α

(a
.u

.)

0

5

0

3

I si
(A

) ELM

t (s) 3.223.19 3.20 3.21

D
α

(a
.u

.)

• To the probe ELMs appear as 
series of spikes rather than a 
discrete event as on Dα
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In H-mode between ELMs SOL density is lower than in L-mode

L-mode
Shot 107410
<ne> ≈ 4.5×1019 m-3, fGw~ 0.58

LSN configuration

H-mode
Shot 107411
<ne> ≈ 6.5×1019 m-3,  fGw~ 0.65

ELMs

During ELMs SOL density increases to L-mode level
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Temperature and fluctuation levels, H versus L mode
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ELMs

noise

Te (eV)

• Te between ELMs is lower than in L-mode through most of the SOL
• Fluctuation levels of both ne and Te are lower between ELMs than they are in L-mode
• During ELMs ne, Te and fluctuation levels increase to or above L-mode levels
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Far SOL profiles in Upper Single Null (USN) 
and Inner Wall Limited (IWL) configurations
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Outer SOL density profiles are relatively flat in USN and IWL
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Shot 114851
USN configuration H-mode
B = 2 T, Ip = 1 MA
PNBI ~ 4 MW
<ne> ≈ 4.1×1019 m-3,  fGw~ 0.46
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Shot 107577
IWL configuration L-mode
B = 2 T, Ip = 1 MA
PNBI ~ 6.5 MW
<ne> ≈ 2.5×1019 m-3,  fGw~ 0.32

Shot 114850
USN configuration L-mode
B = 2 T, Ip = 1 MA 
PNBI ~ 4 MW, PECH ~ 2 MW
<ne> ≈ 1.9×1019 m-3, fGw~ 0.2

Far SOL density is higher than in LSN discharges 
with comparable average density
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Temperature and density fluctuation profiles
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Te (eV)

• Far SOL temperature is higher than in LSN discharges (but this may be explained 
by higher heating power)

• RMS fluctuation levels are rather flat, so relative levels increase towards the wall
• During ELMs Te and fluctuation levels are higher than in L-mode
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 λ ~ 4 cm
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Comparison of plasma conditions 
at the outer wall and in lower divertor

in USN and IWL
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Far SOL plasmas extend in the lower divertor in USN and IWL

Dα

CII USN

USN

R
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X-point probe
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Lower divertor plasma conditions in IWL and USN are 
comparable to those near the outer wall
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All data mapped to the outer midplane

Shot 107577
IWL configuration L-mode
B = 2 T, Ip = 1 MA
PNBI ~ 6.5 MW
<ne> ≈ 2.5×1019 m-3,  fGw~ 0.32

Shot 114849
USN configuration L-mode
B = 2 T, Ip = 1 MA 
PNBI ~ 4 MW, PECH ~ 2 MW
<ne> ≈ 1.6×1019 m-3, fGw~ 0.18

Mid-plane probe
X-point probe

Mid-plane probe
X-point probe

Lower density in USN is probably due to the secondary X-point



DiMES sample for main wall erosion studies
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DiMES #107 multi-sample probe

A: Carbon w Si E: Beryllium on Si
B: Vanadium on Si F: Silicon
C: Tungsten on Si G: Silicon
D: Carbon w Si
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• Sample #107 has been exposed to a series of 22 plasma discharges
• 20 of the discharges were USN, 2 IWL
• Most of the discharges were L-mode (there were a few spontaneous transitions 

to ELMing H-mode)
• All discharges had comparatively low density
• Preliminary analysis (Bill Wampler) indicates that erosion was quite low
• We will continue next year, preferably in higher density IWL



Intermittent convection 
and its possible effect on the outer wall
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Intermittent cross-field convection in the SOL of DIII-D

• Plasma density, electron temperature and time-resolved particle and heat fluxes in 
the SOL are intermittent in space and time.

• Probe, Beam Emission Spectroscopy (BES) and mid-plane tangential Dα data 
show the existence of intermittent coherent structures born near the LCFS and 
propagating radially towards the wall.

• Intermittent structures have been shown to account for up to 70% of the net cross-
field particle and energy transport. 

• Intermittent events have qualitatively similar character in L-mode and H-mode 
both between and during ELMs.

• Amplitudes of the intermittent events during ELMs are comparable to those in 
high density L-mode.

• In ELM-free H-mode intermittent events are much smaller.
• Previous analysis have shown that the intermittent structures drain particles and 

heat, slow down and shrink in size as they propagate to the wall.
• Do the intermittent structures get to the wall and can they cause sputtering?
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In low density L-mode intermittent events slow down and 
decay before they reach the wall
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225 226 227 228 229 230 231

R(cm)

0.1 ms

LCFS 223 cm
“Knee” shadow 228.5 cm
Limiter 231.5 cm
Wall shadow 233.5 cm

Data taken over a series of 22 identical SAPP discharges 
with mid-plane probe moved between shots in 5 mm steps

Shots 116243 - 116263
B = 2 T, Ip = 1 MA
<ne> ≈ 2.7×1019 m-3,  fGw~ 0.28



Do intermittent events ever get to the wall? Yes, they do!
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In high density L-mode and 
in H-mode during ELMs
intermittent events do get to 
the wall

But between ELMs even in 
high density H-mode signals 
at the wall are very low

Further experiments are needed to quantify the sputtering effect



Summary

• SOL density in L-mode is measurable all the way out to the wall

• Increasing outer wall gap decreases plasma-wall contact

• Fluctuation-induced cross-field transport increases with density  
and flattens far SOL profiles, thus increasing plasma-wall contact

• Particle and heat pulses of ELMs reach remote structures such as 
outer wall and divertor baffles

• Between ELMs plasma-wall contact is weaker than in comparable 
L-mode conditions

• Intermittent events in low density L-mode quickly thermalize with 
the background plasma, slow down and decay as they propagate 
towards the wall

• In high density L-mode and during ELMs in H-mode intermittent 
events do get to the wall and may cause sputtering
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